other pyrromethene derivatives (Sheldrick, Borkenstein, Struckmeier \& Engel, 1978). The shortness of the outer $\mathrm{N}-\mathrm{C}$ bonds [average 1.35 (1) \AA] in comparison to the inner $\mathrm{N}-\mathrm{C}$ bonds [average 1.41 (1) \AA] is explicable in terms of valence tautomers. On this basis, the former bond possesses a formal bond order of 1.5 , the latter of 1.0 .

The dimeric structure of (1) is considerably less strained than a cyclic monomer would be. It has, however, been suggested that a cyclic monomeric biladiene-a,c-metal complex is formed in the initial stages of the cyclization of biladienes-a, (Johnson, 1975). If such dimeric complexes, as observed for (1), are of significance in solution, this would provide support for the hypothesis (Fuhrhop, 1978) that any template effect of the metal cation is relatively unimportant in the base-catalysed cyclization behaviour of bila-dienes-a,c. It appears that a metal cation must be capable of accepting an electron pair if ring closure is to occur. The Zn^{2+} cation cannot function as an electron sink and so no cyclization is observed in its case.

References

Becker, W. \& Sheldrick, W. S. (1978). Acta Cryst. B34, 1298-1304.

Bonnett, R., Davies, J. E. \& Hursthouse, M. B. (1976). Nature (London), 262, 326-328.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phy's. 53, 1891-1898.
Cromer, D. T. \& Waber. J. T. (1965). Acta Cryst. 18, 104-109.

Dolphin, D., Harris, R. L. N., Huppatz, J. L., Johnson, A. W. \& Kay, I. T. (1966). J. Chem. Soc. C. pp. 30-40.

Engel, J. \& Struckmeier, G. (1979). Chem. Ztg, 103, 326-328.
Fuhrhop, J.-H. (1978). Metal Complexes of Open-Chain Tetrapyrrole Pigments in The Porphyrins, edited by D. Dolphin, Vol. IIB, p. 274. New York: Academic Press.
Gossauer, A. \& Engel. J. (1978). Linear Polypyrrolic Compounds in The Porphyrins, edited by D. Dolphin, Vol. IIB, pp. 197-253. New York: Academic Press.
Johnson, A. W. (1975). Q. Rec. Chem. Soc. 29, 1-45.
Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge. England.
Sheldrick, W. S., Becker, W. \& Engel. J. (1978). Acta Crust. B34, 2929-2931.
Sheldrick, W. S., Borkenstein, A., Struckmeier, G. \& Engel, J. (1978). Acta Cryst. B34, 329-332.
Sheldrick, W. S. \& Engel, J. (1980). J. Chem. Soc. Chem. Commun. pp. 5-6.

Acta Cryst. (1981). B37, 252-254

Bis(azobenzenido)dicarbonylosmium(II)

By Zain Dawoodi, Martin J. Mays and Paul R. Raithby
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 2 September 1980; accepted 23 September 1980)

Abstract

C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Os}\), $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NNC}_{6} \mathrm{H}_{5}\right)_{2}\right]$, monoclinic, $P 2_{1} / c, a=10.746$ (3), $b=12.516$ (4), $c=$ $17 \cdot 136$ (5) $\AA, \beta=90.63$ (2) ${ }^{\circ}, U=2304.6 \AA^{3}, Z=4$, $D_{c}=1.754 \mathrm{Mg} \mathrm{m}^{-3}, \mu\left(\mathrm{Mo}_{\mathrm{c}}\right)=5.54 \mathrm{~mm}^{-1}$; final $R=0.033$ for 3433 unique diffractometer data. The Os^{11} atom displays slightly distorted octahedral coordination geometry. The two CO ligands are cis with respect to each other. The azobenzenido ligands have undergone ortho metallation, and are arranged such that the coordinated N atom of one ligand is trans to the coordinated C atom of the other.

Introduction. The reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with azobenzene in refluxing octane affords two major products and a number of low-yield minor products. One of the
major products has been characterized as $\left[\mathrm{HOs}_{5}(\mathrm{CO})_{13}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ (Dawoodi, Mays \& Raithby, 1980). To establish the molecular structure of the other, which was obtained as red-orange crystals by recrystallization from warm hexane after separation from the reaction mixture by thin-layer chromatography ($10 \% \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane eluant), this X -ray analysis was undertaken.

4173 intensities were measured for $3.0<2 \theta \leq 55.0^{\circ}$ on a Stoe four-circle diffractometer with graphitemonochromated Mo K_{0} radiation, an $\omega-\theta$ scan technique, and a crystal $0.32 \times 0.29 \times 0.27 \mathrm{~mm}$. Lp corrections and a semi-empirical absorption correction based on a pseudo-ellipsoid model with 334 azimuthal scan data from 9 independent reflections were applied;

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$U_{\text {eq }}{ }^{*}$
Os(1)	7148 (1)	1678 (1)	2393 (1)	38 (1)
C(1)	5870 (8)	1319 (6)	3087 (4)	47 (4)
O(1)	5022 (6)	1136 (5)	3461 (4)	72 (4)
$\mathrm{C}(2)$	7687 (9)	2846 (7)	3041 (5)	59 (5)
$\mathrm{O}(2)$	7984 (9)	3544 (5)	3439 (5)	94 (6)
N(1)	8204 (5)	2111 (5)	1404 (3)	41 (3)
$\mathrm{N}(2)$	7695 (6)	2577 (5)	835 (4)	47 (4)
C(3)	5965 (7)	2618 (6)	1744 (4)	44 (4)
C(4)	6459 (7)	2867 (6)	1001 (5)	48 (4)
C(5)	5808 (8)	3440 (6)	425 (5)	55 (5)
C(6)	4630 (8)	3783 (7)	577 (5)	56 (5)
C(7)	4113 (8)	3598 (7)	1313 (6)	60 (5)
C(8)	4768 (7)	3010 (6)	1876 (5)	51 (5)
C(9)	9491 (7)	1819 (6)	1261 (4)	47 (4)
C(10)	9798 (9)	1337 (7)	555 (6)	65 (6)
C(11)	11026 (10)	1093 (8)	427 (7)	76 (7)
C(12)	11930 (10)	1336 (9)	977 (7)	83 (7)
C(13)	11614 (9)	1823 (10)	1666 (7)	84 (8)
C(14)	10381 (8)	2052 (8)	1816 (6)	64 (5)
N (3)	8501 (6)	476 (5)	2745 (4)	42 (3)
$\mathrm{N}(4)$	8515 (6)	-406 (5)	2372 (4)	48 (4)
$\mathrm{C}(15)$	6678 (7)	311 (6)	1738 (4)	46 (4)
C(16)	7547 (6)	-522 (6)	1838 (4)	50 (4)
C(17)	7463 (9)	-1491 (6)	1449 (5)	57 (5)
C(18)	6466 (10)	-1661 (7)	936 (5)	67 (5)
C(19)	5603 (10)	-891 (8)	841 (5)	71 (6)
C(20)	5688 (8)	104 (8)	1223 (5)	58 (5)
C(21)	9492 (7)	587 (6)	3306 (5)	50 (4)
C(22)	10657 (8)	158 (7)	3149 (6)	64 (5)
C(23)	11615 (9)	309 (9)	3717 (8)	90 (8)
C(24)	11369 (12)	810 (9)	4402 (8)	95 (9)
C(25)	10216 (11)	1213 (8)	4550 (6)	80 (7)
C(26)	9258 (9)	1108 (7)	4003 (5)	57 (5)

$$
* U_{\mathrm{eq}}=\left(U_{1} U_{2} U_{3}\right)^{1 / 3} .
$$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

for the non-hydrogen atoms are given in Table 1, bond lengths and angles in Table 2.*

Discussion. The analysis shows that the title compound (Fig. 1) is analogous to the Fe complex prepared by the reaction of azoanisole with $\mathrm{Fe}(\mathrm{CO})_{5}$ (Bagga, Flan-

[^0]

Fig. 1. The molecular structure of $\operatorname{lOs}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NNC}_{6} \mathrm{H}_{5}\right)_{2}$.
nigan, Knox \& Pauson, 1969). Related Os complexes with $\left(\mathrm{CH}_{3} \mathrm{NCHC}_{6} \mathrm{H}_{4}-\right)$ (Choo Yin \& Deeming, 1977) and benzo[$h] q$ uinoline (Bruce, Goodall \& Stone, 1973) as the ligands have also been prepared from $\mathrm{Os}_{3}(\mathrm{CO})_{12}$.

Two coordinated azobenzenido ligands have also been observed in the structure of bis(azobenzenido)rhodium acetate (Craik, Knox, Pauson, Hoare \& Mills, 1971). However, in the Rh complex the two orthometallated C bonds are cis to each other while the $\mathrm{Rh}-\mathrm{N}$ bonds are trans. In the title compound the Os atom displays a slightly distorted octahedral coordination geometry, with the largest deviation caused by the bite requirement of the azobenzenido ligand, but the two $\mathrm{Os}-\mathrm{N}$ bonds are cis to each other as are the two $\mathrm{Os}-\mathrm{C}$ bonds of the chelating ligand. The two carbonyl ligands are also cis to each other. The Os-C(carbonyl) bond trans to the coordinated N atom is significantly shorter than the $\mathrm{Os}-\mathrm{C}$ bond trans to the ortho-
metallated C atom. This suggests that the azobenzenido C atom is involved in π-bonding to the metal with competition between the two trans C atoms for the π-electron density on the Os, giving rise to the longer $\mathrm{Os}-\mathrm{C}$ bond. Both $\mathrm{Os}-\mathrm{N}$ bonds are longer than the terminal $\mathrm{Os}-\mathrm{N}$ distance of 1.94 (3) \AA in $\left[\mathrm{HOs}_{5}(\mathrm{CO})_{13}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right.$] (Dawoodi, Mays \& Raithby, 1980) where π-donation is considered to be present.
The $\mathrm{N}-\mathrm{N}$ lengths in the title compound are similar to the value in $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NNC}_{6} \mathrm{H}_{4}\right)_{2}\right]$ (Craik, Knox, Pauson, Hoare \& Mills, 1971), and indicate the presence of considerable multiple $\mathrm{N}-\mathrm{N}$ bonding. The geometry of the remainder of the ligand corresponds closely to the expected values.

We thank the Science Research Council for financial support. Calculations were performed on the University of Cambridge IBM 370/165 computer with SHELX 76 (Sheldrick, 1976); the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Bagga, M. M., Flannigan, W. T., Knox, G. R. \& Pauson, P. L. (1969). J. Chem. Soc. C, pp. 1534-1537.

Bruce, M. I., Goodall, B. L. \& Stone, F. G. A. (1973). J. Organomet. Chem. 60, 343-349.
Choo Yin, C. \& Deeming, A. J. (1977). J. Organomet. Chem. 133, 123-138.
Craik, A. R. M., Knox, G. R., Pauson, P. L., Hoare, R. J. \& Mills, O. S. (1971). J. Chem. Soc. Chem. Commun. pp. 168-169.
Dawoodi, Z., Mays, M. J. \& Raithby, P. R. (1980). J. Chem. Soc. Chem. Commun. pp. 712-714.
International Tables for X-ray Cry'stallography (1974). Vol. IV. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of the Flavone-3-monophosphate-Magnesium Complex

By R. Bergstrom, K. Satyshur and M. Sundaralingam
Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 30 June 1980; accepted 22 September 1980)

Abstract

C}_{15} \mathrm{H}_{9} \mathrm{O}_{6} \mathrm{P}^{2-} . \mathrm{Mg}^{2+} .5 \mathrm{H}_{2} \mathrm{O}\), monoclinic, $\mathrm{C} 2 / \mathrm{c}$, $a=40.877$ (3), $b=6.296$ (1), $c=14 \cdot 139$ (1) $\AA, \beta=$ $101.72(1)^{\circ}, Z=8, D_{m}=1.60, D_{c}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$ ($T=295 \mathrm{~K}$). The structure was solved by direct methods and refined by the block-diagonal least-

0567-7408/81/010254-05\$01.00
squares method to a final R value of 0.041 for 2721 reflections measured on a diffractometer. The crystal consists of hydrophobic layers, containing the aromatic portions of the flavone molecule, separated by hydrophilic layers which contain the phosphate group, the

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and bond angles involving H have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35687 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

